设两电阻分别为R1和r2.则并联时等效电阻R=(R1*R2)/(R1+R2).
当其中一个增加a时等效等效电阻R’=(R1+a)*R2/(R1+R2+a).
R'-R=(R1+a)*R2/(R1+R2+a)-R1*R2/(R1+R2)=a*R2^2/(R1+R2+a)(R1+R2)
=a*{R2/(R1+R2+a)}*{R2/(R1+R2)}
显然:R2/(R1+R2+a)}*{R2/(R1+R2)}是真分数
所以a*R2/(R1+R2+a)}*{R2/(R1+R2)}小于a.即,R’-R小于a.