1.微分-几何意义
几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量.当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段.
2.几何上都可用 曲边梯形面积的代数和来表示,这就是定积分的几何意义.
3.不定积分的几何意义:函数 f(x)的一个原函数y=F(x)是这样一条曲线,曲线上任一点(x,F(x))切线斜率等于f(x),曲线F(x)沿y轴平行移动得到y=F(x)+C(一族积分曲线),它们都是f(x)原函数的曲线.