不定积分 要快啊,我要交了.求下列不定积分(凑微分法):(1)∫x+1/(x^2+2x+3)^1/4dx (2)∫e^x

1个回答

  • =∫x+1/(x^2+2x+3)^1/4dx =2∫(x^2+2x+3)^1/4d(x^2+2x+3)=2∫(x^2+2x+3)^1/4d(x^2+2x+3)=2/3(x^2+2x+3)^3/4+C=∫cos(e^x)de^x=sine^x+c=1/2∫x dx =1/4x^2+c=^3∫(x^3-x)(x^2)dx =^3∫(x^3-x)x^2dx=^3(∫x^5/6-x^3/2)dx=11乘以根号3乘以x^11/6/6-2乘以根号3乘以x^5/2/5+c=-2∫(x+1)^5d(x+1)^2=-5/3(x+1)^6/5+c=-2∫e^x2dx^2=-2e^x2+c怀疑你抄错题了=-2∫ex^2dx^2+x=-2ex^2+x+c=∫e^xdx-2∫x^2dx=e^x-4/3x^3/2+c= ∫de^x/(1+2e^x)^2=1/2∫d(2e^x+1)/(1+2e^x)^2=(1+2e^x)^2+c

    =3/2∫sin2/3x d2/3x =-3/2cos2/3x+c=-∫sin1/x d1/x =cos1/x+c=∫dlnx/lnx^3=3∫dlnx/lnx=3lnlnx+c=1/3∫xe^3xd3x =1/3∫xde^3x =1/3xe^3x-1/9∫e^3xd3x=1/3xe^3x-1/9e^3x+c临时有事,剩下的自己做吧