an=2
a(n+1)*a(n-1)=an^2
[a(n+1)+1][a(n-1)+1]=(an+1)^2
乘开 即有 an^2+a(n+1)+a(n-1)+1=an^2+2an+1
a(n+1)+a(n-1)=2an=2[a(n+1)+a(n-1)]^0.5
[a(n+1)-a(n-1)]^2=0
a(n+1)=a(n-1)
所以,该数列为常数数列
an=2
an=2
a(n+1)*a(n-1)=an^2
[a(n+1)+1][a(n-1)+1]=(an+1)^2
乘开 即有 an^2+a(n+1)+a(n-1)+1=an^2+2an+1
a(n+1)+a(n-1)=2an=2[a(n+1)+a(n-1)]^0.5
[a(n+1)-a(n-1)]^2=0
a(n+1)=a(n-1)
所以,该数列为常数数列
an=2