(1)由题意知f(1)=1+2b+c=0,
∴c=-1-2b
记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1
则g(-3)=5-7b>0
g(-2)=1-5b<0∴[1/5<b<
5
7]
g(0)=-1-b<0
g(1)=b+1>0 即b∈([1/5,
5
7]).(7分)
(2)令u=f(x).∵0<[1/5<b<
5
7<1
∴logbu在(0,+∞)是减函数
而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b
∴f(x)在区间(-1-c,1-c)上为增函数,
从而F(x)=logbf(x)在(-1-c,1-c)上为减函数
且f(x)在区间(-1-c,1-c)上恒有f(x)>0,
只需f(-1-c)≥0,
且c=-2b-1 (
1
5<b<
5
7]) 所以?
17
7<c≤?2.(13分)