sin(B+C)=sinA=2√2/3
cos(B+C)=-cosA=-1/3
cos[(B+C)/2]=√[(1-1/3)/2]=√3/3
sin[(B+C)/2]=√6/3
cos2A=2(cosA)^2-1=-7/9
所以[sin(B+C)/2]^2+cos2A=2/3-7/9=-1/9
用正弦定理求出c=3√3/4,b=√6/2+√3/4
sin(B+C)=sinA=2√2/3
cos(B+C)=-cosA=-1/3
cos[(B+C)/2]=√[(1-1/3)/2]=√3/3
sin[(B+C)/2]=√6/3
cos2A=2(cosA)^2-1=-7/9
所以[sin(B+C)/2]^2+cos2A=2/3-7/9=-1/9
用正弦定理求出c=3√3/4,b=√6/2+√3/4