DNA甲基化补救合成途径是怎样进行的

1个回答

  • 在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5甲基胞嘧啶,这常见于基因的5’-CG-3’序列.大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5’端的非编码区,并成簇存在.甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化.DNA的甲基化可引起基因的失活.

    结构基因含有很多CPG 结构, 2CPG 和2GPC 中两个胞嘧啶的5 位碳原子通常被甲基化, 且两个甲基集团在DNA 双链大沟中呈特定三维结构.基因组中60%~ 90% 的CPG 都被甲基化, 未甲基化的CPG 成簇地组成CPG 岛, 位于结构基因启动子的核心序列和转录起始点.有实验证明超甲基化阻遏转录的进行.DNA 甲基化可引起基因组中相应区域染色质结构变化, 使DNA 失去核酶ö限制性内切酶的切割位点, 以及DNA 酶的敏感位点, 使染色质高度螺旋化, 凝缩成团, 失去转录活性.5 位C 甲基化的胞嘧啶脱氨基生成胸腺嘧啶, 由此可能导致基因置换突变, 发生碱基错配: T2G, 如果在细胞分裂过程中不被纠正,就会诱发遗传病或癌症, 而且, 生物体甲基化的方式是稳定的, 可遗传的.

    DNA 甲基转移酶有两种: 1) DNM T1, 持续性DNA 甲基转移酶—— 作用于仅有一条链甲基化的DNA 双链, 使其完全甲基化, 可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶) 联合作用阻断转录; 2)DNM T3a、DNM T3b从头甲基转移酶, 它们可甲基化CPG, 使其半甲基化, 继而全甲基化.从头甲基转移酶可能参与细胞生长分化调控, 其中DNM T3b在肿瘤基因甲基化中起重要作用.

    DNA 去甲基化有两种方式: 1) 被动途径: 由于核因子N F 粘附甲基化的DNA , 使粘附点附近的DNA不能被完全甲基化, 从而阻断DNM T1 的作用; 2) 主动途径: 是由去甲基酶的作用, 将甲基集团移去的过程.在DNA 甲基化阻遏基因表达的过程中, 甲基化CPG 粘附蛋白起着重要作用.虽然甲基化DNA 可直接作用于甲基化敏感转录因子E2F、CREB、A P2、CM ycöM yn、N F2KB、Cmyb、Ets, 使它们失去结合DNA 的功能从而阻断转录, 但是, 甲基化CPG 粘附分子可作用于甲基化非敏感转录因子(SP1、CTF、YY1) , 使它们失活, 从而阻断转录.人们已发现5 种带有恒定的甲基化DNA 结合域(MBD ) 的甲基化CPG 粘附蛋白.其中M ECP2、MBD1、MBD2、MBD3 参与甲基化有关的转录阻遏;MBD1 有糖基转移酶活性, 可将T 从错配碱基对TöG 中移去,MBD4 基因的突变还与线粒体不稳定的肿瘤发生有关.在MBD2 缺陷的小鼠细胞中, 不含M ECP1 复合物, 不能有效阻止甲基化基因的表达.这表明甲基化CPG 粘附蛋白在DNA 甲基化方式的选择, 以及DNA 甲基化与组蛋白去乙酰化、染色质重组相互联系中的有重要作用.