1
f'(x)=0+(1-lnx)/x^2
则当x>e时,1-lnx0;此时单调递增;
2
令F(x)=f(x)-(kx+1)>(1+lnxx)-kx-1=lnxx-kx=(lnx-k)x
则F'(x)=[1-x(lnx-k)]/x^2
当F'(x)=0时,[1-x(lnx-k)]/x^2=0,则
1-x(lnx-k)=0
k=lnx-1/x
k'=1/x+1/x^2>0,
∴k≥lim (lnx-1/x) x→0
=lim (xlnx-1)/x x→0
=lim (lnx+1) x→0
→-∞