两平行直线
L1:(x-x1)/m=(y-y1)/n=(z-z1)/p,L2:(x-x2)/m=(y-y2)/n=(z-z2)/p,
记 M1(x1,y1,z1),M2(x2,y2,z2),直线方向向量 s = {m,n,p}
则 记向量 M1M2 = {x2-x1,y2-y1,z2-z1} = {a,b,c}
故得平行线间的距离
d = | M1M2×s | / |s|
=√[(bp-cn)^2+(cm-ap)^2+(an-bm)^2]/√(m^2+n^2+p^2)
两平行直线
L1:(x-x1)/m=(y-y1)/n=(z-z1)/p,L2:(x-x2)/m=(y-y2)/n=(z-z2)/p,
记 M1(x1,y1,z1),M2(x2,y2,z2),直线方向向量 s = {m,n,p}
则 记向量 M1M2 = {x2-x1,y2-y1,z2-z1} = {a,b,c}
故得平行线间的距离
d = | M1M2×s | / |s|
=√[(bp-cn)^2+(cm-ap)^2+(an-bm)^2]/√(m^2+n^2+p^2)