斜向上抛出,设抛方向与水平方向夹角为β,初速度为v
vx=vcosβ,vy=vsinβ
t=S/vx=S/(vcosβ)
h=vyt-1/2gt^2=vsinβ*S/(vcosβ)-1/2g[S/(vcosβ)]^2=Stanβ-gS^2/[2v^2cos^2β]
v^2 = gS^2/{2(Stanβ-h)cos^2β}
= gS^2/{(2Ssinβcosβ-2hcos^2β)}
= gS^2/{(Ssin2β-hcos2β-h)}
令tanα = h/S:
v^2 = gS^2/{√(S^2+h^2) (sin2βcosα-cos2βsinα)-h} = gS^2/{√(S^2+h^2) sin(2β-α)-h}
当2β-α=90°,即β=α/2+45°,其中tanα=h/S时,分母最大
此时最小速度v=S√g/√(S^2+h^2)-h}