∫secx dx=∫(dx)/cosx=∫(cosx/cos²x)dx
=∫(d sinx)/(1-sin²x)
=(1/2)ln│(1+sinx)/(1-sinx)│+C
=(1/2)ln(1+sinx)²/(1-sin²x)+C
=(1/2)ln[(1+sinx)/cosx]²+C
=ln│secx+tanx│+C
∫secx dx=∫(dx)/cosx=∫(cosx/cos²x)dx
=∫(d sinx)/(1-sin²x)
=(1/2)ln│(1+sinx)/(1-sinx)│+C
=(1/2)ln(1+sinx)²/(1-sin²x)+C
=(1/2)ln[(1+sinx)/cosx]²+C
=ln│secx+tanx│+C