m^2=n+2
n^2=m+2
则m^3-2mn+n^3=m*(n+2)-2mn+n*(m+2) (这一步是把m^3中的m^2用已知条件代了)
=mn+2m-2mn+mn+2n
=2(m+n)
而由已知条件,m2-n2=n-m
(m-n)(m+n)=n-m
m+n=-1
所以原式=-2
m^2=n+2
n^2=m+2
则m^3-2mn+n^3=m*(n+2)-2mn+n*(m+2) (这一步是把m^3中的m^2用已知条件代了)
=mn+2m-2mn+mn+2n
=2(m+n)
而由已知条件,m2-n2=n-m
(m-n)(m+n)=n-m
m+n=-1
所以原式=-2