取BD的中点为F.
∵AB=AD、F∈BD且BF=DF,∴AF⊥BD,又CD⊥BD,∴AF∥CD,
∴∠PAF=PA、CD所成的角.
∵梯形ABCD是直角梯形,又CD⊥BD、AD∥BC,∴AB⊥BC、AB⊥AD.
∵AB⊥AD、AB=AD=3,∴BD=3√2.
∵AB⊥AD、BF=DF,∴AF=BD/2=3√2/2.
∵PB⊥平面ABCD,∴AB⊥PB,又AB=PB=3,∴PA=3√2,∴PA=2BD.
∵PB⊥平面ABCD,∴AF⊥PB,又AF⊥BD、PB∩BD=B,∴AF⊥平面PBD,∴AF⊥PF.
由AF⊥PF、PA=2BD,得:∠PAF=60°.
∴PA、CD所成的角为60°.