因为等差数列{an} {bn}前n项和为An,Bn
所以an/bn=A2n-1/B2n-1
又An/Bn=(7n+2)/(4n+27)
所以A2n-1/B2n-1=[7*(2n-1)+2]/[4* (2n-1)+27]
所以an/bn=(14n-5)/(8n+23)
因为等差数列{an} {bn}前n项和为An,Bn
所以an/bn=A2n-1/B2n-1
又An/Bn=(7n+2)/(4n+27)
所以A2n-1/B2n-1=[7*(2n-1)+2]/[4* (2n-1)+27]
所以an/bn=(14n-5)/(8n+23)