令x10
f(x2)-f(x1)
=ln(1+e^x2)+x2-ln(1+e^x1)-x1
=ln[(1+e^x2)/(1+e^x1)]+(x2-x1)
因为e^x是增函数,所以e^x2>e^x1
1+e^x2>1+e^x1>0
(1+e^x2)/(1+e^x1)>1
ln x也是增函数
ln[(1+e^x2)/(1+e^x1)]>ln 1=0
所以f(x2)-f(x1)>x2-x1>0
所以f(x)在R上单调增
令x10
f(x2)-f(x1)
=ln(1+e^x2)+x2-ln(1+e^x1)-x1
=ln[(1+e^x2)/(1+e^x1)]+(x2-x1)
因为e^x是增函数,所以e^x2>e^x1
1+e^x2>1+e^x1>0
(1+e^x2)/(1+e^x1)>1
ln x也是增函数
ln[(1+e^x2)/(1+e^x1)]>ln 1=0
所以f(x2)-f(x1)>x2-x1>0
所以f(x)在R上单调增