作AO⊥BC
AO=√3 ==>
DC=2√3-2,DO=1 ==>
BC=3√3-3,OC=2√3-3 ==>
BO=√3 ==>
AB=√6,∠ABC=45°
则AC^2=AB^2+BC^2-2*AB*BC*cos∠ABC
=(3√2-√6)^2
则cos∠BAC=(AB^2+AC^2-BC^2)/(2AB*AC)=-1/2
则∠BAC=120°
作AO⊥BC
AO=√3 ==>
DC=2√3-2,DO=1 ==>
BC=3√3-3,OC=2√3-3 ==>
BO=√3 ==>
AB=√6,∠ABC=45°
则AC^2=AB^2+BC^2-2*AB*BC*cos∠ABC
=(3√2-√6)^2
则cos∠BAC=(AB^2+AC^2-BC^2)/(2AB*AC)=-1/2
则∠BAC=120°