证明:
∵E为AB的中点,AF=1/4AD
∴AF/BE=AE/BC=1/2
∵∠A=∠B
∴△AEF∽△BCE
∴∠AEF=∠BCE
∴∠AEF+∠BEC=∠BCE+∠BEC=90°
∴∠CEF=90°
∵EG⊥CF
∴△EFG∽△CEG
∴EG²=CG*CFG
证明:
∵E为AB的中点,AF=1/4AD
∴AF/BE=AE/BC=1/2
∵∠A=∠B
∴△AEF∽△BCE
∴∠AEF=∠BCE
∴∠AEF+∠BEC=∠BCE+∠BEC=90°
∴∠CEF=90°
∵EG⊥CF
∴△EFG∽△CEG
∴EG²=CG*CFG