关于函数极限的题目 大一的f(x)在R上可导,lim(f(x)+xf'(x))=L(x 趋于无穷大时), 证明limf(
M时有L-a"}}}'>
2个回答
也能做~
因为lim(f(x)+xf'(x))=L可以写成lim(x*f(x))!=L
所以对于任意的a存在一个M当x>M时有L-a
相关问题
一道极限题求解首先,x趋于正无穷大时,limxf(x) limf(x)存在,并且x趋于正无穷大时,lim3xf(x)=l
微积分证明题f(x)在a到无穷大上可导,x趋向于无穷大时,lim f'(x)=0 求证x趋向于无穷大时 limf(x)/
x趋于x0,lim|f(x)|=0,根据函数极限的定义证明x趋于x0时limf(x)=0
x趋于x0,lim|f(x)|=0,根据函数极限的定义证明x趋于x0时limf(x)=0
数分:证明极限f(x)在[a,+无穷大)可导,且f(x)=f'(x),x->无穷大时两极限存在,求证:当x->无穷大时,
若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是
f(x)在a的邻域上连续可导,limf'(x)=L(x趋向于a时),证明f'(a)=L
极限计算法则若limf(x)=无穷大limg(x)=无穷大那么是不是lim[f(x)+g(x)]与limf(x)+lim
若函数f(x)在R上可导,且满足f(x)<xf′(x),则( )
设函数f(x)在R上连续,且当X趋向于无穷大时,limf(x)=A.证明:f(x)在R上必有界.