如图所示,AD是圆O的直径,BC切圆O于点D,AB,AC与圆O相交于E.F,求证AE×AB=AF×AC

1个回答

  • 夜猫猫_涵er,

    (图见参考资料.)

    1)如图1.

    连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.

    则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;

    同理△AFD∽△ADC,AD/AF=AC/AD,AD^2=AF×AC⑵.

    ∴AE×AB=AF×AC

    2)如图2.结论依然成立.

    过点D作BC的平行线分别交AB、AC的延长线于B',C'.

    则AB/AB'=AC/AC',AB×AC'=AC×AB'⑴;

    又AD⊥BC,则AD⊥B’C’.连接DE、DF,则1)的结论可知:AE×AB’=AF×AC’⑵

    ⑴×2)得:AE×AB×(AB'AC')=AF×AC×(AB'×AC')

    故:AE×AB=AF×AC.

    3)如图3.结论依然成立.

    过点D作BC的平行线,分别交AB、AC于B',C'.

    则AB/AB'=AC/AC',AB×AC'=AC×AB'⑶;

    又AD'⊥BC,则AD⊥B’C’.连接DE、DF,则1)的结论可知:AE×AB’=AF×AC’⑷

    ⑶×⑷得:AE×AB×(AB'AC')=AF×AC×(AB'×AC')

    故:AE×AB=AF×AC.