tan15°=tan(45°-30°)=(tan45°-tan30°)/(1+tan45°tan30°)=2-根号3
设AB=DC=m,则AD=BC=2m
∵∠EDC=15°
∴EC=DCtan15°=mtan15°
BE=BC-EC=2m-mtan15°
AE^2=AB^2+BE^2
=m^2+(2m-mtan15°)^2
=m^2{1+(2-tan15°)^2}
=m^2{1+(2-2+根号3)^2}
=4m^2
∴AE=2m
∴AD=AE
tan15°=tan(45°-30°)=(tan45°-tan30°)/(1+tan45°tan30°)=2-根号3
设AB=DC=m,则AD=BC=2m
∵∠EDC=15°
∴EC=DCtan15°=mtan15°
BE=BC-EC=2m-mtan15°
AE^2=AB^2+BE^2
=m^2+(2m-mtan15°)^2
=m^2{1+(2-tan15°)^2}
=m^2{1+(2-2+根号3)^2}
=4m^2
∴AE=2m
∴AD=AE