记:g(x)=S[a,x]tf(t)dt-[(a+x)/2]S[a,x]f(t)dt,a
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d
1个回答
相关问题
-
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a
-
设函数f(x)在[a,b]上连续,∫[a,b]f(x)dx=∫ [a,b]xf(x)dx=0
-
设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,求证a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx
-
设f(x)在[a,b]上连续,且∫(a到b)f(x)dx=1,求∫(a到b)f(a+b-x)dx.
-
设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
-
设函数f(x)在[a,b]上有连续的导函数,且f(a)=f(b)=0,∫(b,a) [f(x)^2]dx=1,则∫(b,
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
-
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
-
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续
-
f(x)在[a,b]上连续,g(x)也在[a,b]连续且不变号,求证:存在ξ∈[a,b] 有 ∫f(x)g(x)dx=f