用数学归纳法
当n=1时,
左边=1/(1+1)!=1/2;
右边=1-1/(1+1)!=1/2=左边;
所以当n=1时等式成立;
假设当n=k(k>0,且k为整数)时该等式成立,即有:
1/2!+2/3!+……+k/(k+1)!=1-1/(k+1)!;
那么当n=k+1时,
左边=1/2!+2/3!+……+k/(k+1)!+(k+1)/(k+2)!
=1-1/(k+1)!+(k+1)/(k+2)!
=1-1/(k+1)!+(k+1)/((k+1)!*(k+2))
=1-(1-(k+1)/(k+2))/(k+1)!
=1-1/((k+2)*(k+1))
=1-1/(k+1+1)!
=1-1/(n+1)!=右边
所以当n=k+1时等式成立;
综上所述,可知原等式成立;
证毕