SOS!一道排列组合题求证:1/2!+2/3!+3/4!+.+ n/(n+1)!=1-1/(n+1)!

1个回答

  • 用数学归纳法

    当n=1时,

    左边=1/(1+1)!=1/2;

    右边=1-1/(1+1)!=1/2=左边;

    所以当n=1时等式成立;

    假设当n=k(k>0,且k为整数)时该等式成立,即有:

    1/2!+2/3!+……+k/(k+1)!=1-1/(k+1)!;

    那么当n=k+1时,

    左边=1/2!+2/3!+……+k/(k+1)!+(k+1)/(k+2)!

    =1-1/(k+1)!+(k+1)/(k+2)!

    =1-1/(k+1)!+(k+1)/((k+1)!*(k+2))

    =1-(1-(k+1)/(k+2))/(k+1)!

    =1-1/((k+2)*(k+1))

    =1-1/(k+1+1)!

    =1-1/(n+1)!=右边

    所以当n=k+1时等式成立;

    综上所述,可知原等式成立;

    证毕