首先,ABC为正三角形,BM=CN
可以得出三角形ABM全等于三角形BCN(AB=BC,角ABM=角BCN,BM=CN)
那么角BAM=角CBN
角AMB=角QMB=180°-角BAM-角ABM=120°-角BAM=120°-角CBN
角QMB=120°-角CBN
而角BQM=180°-角QBM-角QMB=180°-(120°-角CBN+角QBM)=60°
而角BQM和角AQN为对顶角,所以AQN为60°
(对于角AMC=角BAM+角ABC=角CBN+角BQM
角AMC看做三角形AMB的外角,角AMC=角BAM+角ABC
角AMC看做三角形QBM的外角,角AMC=角QMC=角CBN+角BQM)