可以证明存在一点ζ使得f(ζ)+ζf'(ζ)=0成立.
高数微分中值定理已知函数f(x)在[a,b]内连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在一点ζ使得f
3个回答
相关问题
-
高数题中值定理证明题设函数f(x)在(a,b)内可导,f(x)不为常数,且f(a)=f(b),求证:在(a,b)内存在一
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
-
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f
-
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
-
设f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=f(a),求证:存在 ζ∈(0
-
微分中值定理习题!设函数 f在[a,b]上连续,在(a,b)内可导,且a*b>0.证明存在a一天了,
-
设f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b)=1.证:存在ζ,η∈(a,b),使e^(η-ζ)[
-
f(x)可导,f(a)=f(b),证明存在ζ∈(a,b)使得f(a)-f(ζ)=ζf'(ζ)
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ、η∈(a,b),使得f′(ξ)f′(
-
(1)定理:若函数f(x)的图象在区间[a,b]上连续,且在(a,b)内可导,则至少存在一点ξ∈(a,b),使得f(b)