a(n+1) = a(n) + 2(n+1) = a(n) + (n+1)(n+2) - (n+1)n,a(n+1) - (n+1)(n+2) = a(n) - n(n+1),{a(n) - n(n+1)}是首项为a(1) - 2 = 0,的常数数列.a(n) - n(n+1) = 0,a(n) = n(n+1). 2b(n) = a(n) + a(n+1) = n(n+1) +...
在数列an bn中 a1=2,an=an-1+2n,且an,bn,an+1成等差数列,求an,bn的通项公式,注意题中n
1个回答
相关问题
-
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
-
设a1=2,an+1=2an+1,bn=|an+2an−1|,n∈N+,则数列{bn}的通项公式bn为( )
-
在数列an中,A1=1,A(n+1)=(1+1/n)An+(n+1)/2,设Bn=An/n,求数列Bn的通项公式.
-
已知数列{an}中,a1=2,an=a(n-1)+1,数列{bn}的通项公式为bn=2^(n+1),数列{an·bn}的
-
在数列{an}和{bn}中,an>0,bn>0,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成
-
若数列{an}、{bn}的通项公式分别是an=(-1)n+2007•a,bn=2+(−1)n+2008n,且an<bn,
-
在数列an中,a1=1.an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项
-
已知数列{an}中a1=1,an+1=(1+1/n)an+(n+1)/(2^n),bn=an/m 求bn的通项公式!求解
-
数列an中,a1=2,an+1=3an-2,bn=an-1,求证bn为等比数列,求an通项公式(n+1为下标)
-
已知数列{an}{bn}中,a1=0,b1=1,且当n属于N*时,an,bn,an+1成等差数列,bn,an+1,bn+