lg√27=(1/2)lg27=(3/2)lg3,
lg8=3lg2,
3lg√10=(3/2)lg10=3/2,
lg1.2=lg[(3*4)/10]=lg3+lg4-lg10=(lg3)+2(lg2)-1,
[(lg√27)+lg8-(3lg√10)]/lg1.2
=(3/2)[(lg3)+2(lg2)-1]/[(lg3)+2(lg2)-1]
=3/2.
lg√27=(1/2)lg27=(3/2)lg3,
lg8=3lg2,
3lg√10=(3/2)lg10=3/2,
lg1.2=lg[(3*4)/10]=lg3+lg4-lg10=(lg3)+2(lg2)-1,
[(lg√27)+lg8-(3lg√10)]/lg1.2
=(3/2)[(lg3)+2(lg2)-1]/[(lg3)+2(lg2)-1]
=3/2.