(1)
f(x)=2x^3-3(a+1)x^2+6ax+8,
f'(x)=6x^2-6(a+1)x+6a
=6(x-1)(x-a)
因为函数f(x)在[1,3]上递减,在[3,4]上递增
所以f'(3)=0,那么 a=3
(2)
f(x)=2x^3-12x^2+18x+8
f'(x)=6(x-1)(x-3)
令f'(x)=0解得x1=1,x2=3
随x变化,f'(x),f(x)变化如下:
x 0 (0,1) 1 (1,3) 3 (3,4) 4
f'(x) + 0 - 0 +
f(x) 8 增 16 减 8 增 16
f(x)max=16 ,f(x)min=8