i^2 = i(i+1)-i
= (1/3)[i(i+1)(i+2) - (i-1)i(i+1)] -(1/2)[i(i+1)- (i-1)i]
1^2+2^2+.+n^2
=∑(i:1->n) i^2
=∑(i:1->n) {(1/3)[i(i+1)(i+2) - (i-1)i(i+1)] -(1/2)[i(i+1)- (i-1)i]}
= (1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
i^2 = i(i+1)-i
= (1/3)[i(i+1)(i+2) - (i-1)i(i+1)] -(1/2)[i(i+1)- (i-1)i]
1^2+2^2+.+n^2
=∑(i:1->n) i^2
=∑(i:1->n) {(1/3)[i(i+1)(i+2) - (i-1)i(i+1)] -(1/2)[i(i+1)- (i-1)i]}
= (1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)