解题思路:(1)用多项式除法观察余数(2)运用待定系数法.首先假设该多项式分解后的因式为(2x-3)(3x+1)(mx+n),再利用展开后x的各次项系数对应相等,依次解得n、m、b、a的值.
若(2x-3)和(3x+1)都是f(x)=ax2+bx2+32x+15的因式,
则(2x-3)(3x+1)=6x2-7x-3能整除f(x).
解法1:
利用多项式与多项式的大除法:
∴b+
7a
b=−30且32+
a
2=35,
∴a=6且b=-37
即:f(x)=bx3-37x2+32x+15=(2x-3)(3x+1)(x-5)
解法2:f(x)=(2x-3)(3x+1)(mx+n)
=(6x2−7x−3)(mx+n)
=6mx3+(6n−7m)x2−(3m+7n)x−3n
=ax3+bx2+32x+15
∴
a=bm
b=6n−7m
32=−(3m+7n)
15=−3n
∴n=-5,m=1,b=-37,a=6
即f(x)=(2x-3)(3x+1)(x-5)=6x3-37x2+32x+15
点评:
本题考点: 因式分解的应用.
考点点评: 本题考查因式分解的应用.解决本题的关键是同学们彻底明白待定系数的意义,并能做到灵活运用.