已知在棱长为1的正方体AC1中E,F,G分别为A1B1,BB1,CC1的中点,求异面直线CF与AE所成的角

3个回答

  • 过B1作B1H∥DA交AB于H,令GH的中点为M.

    ∵ABCD-A1B1C1D1是棱长为1的正方体,∴EB1∥AH、B1F∥C1G、A1B1=AB、BB1=CC1,

    又EB1=A1B1/2、AH=AB/2; B1F=BB1/2、GC=CC1/2,∴EB1=AH,B1F=GC.

    由EB1∥AH、EB1=AH,得:AHB1E是平行四边形,∴B1H∥EA.

    由B1F∥C1G、B1F=GC,得:B1FCG是平行四边形,∴B1G∥FC.

    由B1H∥EA、B1G∥FC,得:∠GB1H=CF与AE所成的角.

    容易得到:B1H=CH=B1G=√(BC^2+BH^2)=√(1+1/4)=√5/2.

    还容易得到:GH=√(CG^2+CH^2)=√(1/4+5/4)=√6/2.

    ∵B1G=B1H、GM=HM,∴B1M⊥GM、∠GB1H=2∠GB1M.

    ∴B1M=√[B1G^2-(GH/2)^2]=√(5/4-6/16)=√14/4.

    ∴cos∠GB1M=B1M/B1G=(√14/4)/(√5/2)=√14/(2√5)√7/√10.

    ∴cos∠GB1H=cos2∠GB1M=1-2(cos∠GB1M)^2=1-2×(7/10)=-2/5.

    ∴∠GB1H=arccos(-2/5).

    即:CF与AE所成的角所成的角为arccos(-2/5).