y=(x-1)e^arctanx
y'=e^arctanx+(x-1)e^arctanx*1/(1+x^2)
=e^arctanx[(1+x^2)+(x-1)]/(x^2+1)
=e^arctanx(x^2+x)/(x^2+1)=0
∵e^arctanx>0
(x^2+1)>0
∴x^2+x=0
x(x+1)=0
所以当x>0或x
y=(x-1)e^arctanx
y'=e^arctanx+(x-1)e^arctanx*1/(1+x^2)
=e^arctanx[(1+x^2)+(x-1)]/(x^2+1)
=e^arctanx(x^2+x)/(x^2+1)=0
∵e^arctanx>0
(x^2+1)>0
∴x^2+x=0
x(x+1)=0
所以当x>0或x