(1)∵OG∥BC,AC=8,
∴∠B=∠AGO=45°,
∴OA=OG=4.
∵S△AFH=8,S△AGH=10,
∴GH=5,FH=4.
∴OH=1,OF=5,
∴F(-5,0),H(-1,0),B(8,-4).
(2)不变,∠N+∠M=97.5°.
理由如下
设∠HAC=α,∠GAO=∠AGO=45°,
∴∠FHA=∠HAG+∠AGH=90°+α.
∵HM平分∠AHF,
∴∠FHM= ∠FHA=45°+ α.
∵GM平分∠AGH,
∴∠HGM= ∠AGO=22.5°.
∵∠FHM=∠HMG+∠MGH,
∴45°+ α=∠M+22.5°,
∴∠M=22.5°+ α.
又FN平分∠EFO,
∴∠NFO= ∠EFO= (∠FOA+∠FAO)
= (90°+30°+α)=60°+ α,
∴∠N=180°-∠NFO-∠NOF
=180°-(60°+ α)-45°
=75°- α.
∴∠N+∠M=(75°- α)+(22.5°+ α)=97.5°.