求f(x)与y=1的交点:
1/3x³-1/2x²+1=1
得:x²(1/3x-1/2)=0
得:x=0, 3/2
面积=∫(0, 3/2) (1-f(x))dx
=∫(0, 3/2)(-1/3x³+1/2x²)dx
=[-1/12x^4+1/6x³](0, 3/2)
=-1/12(3/2)^4+1/6(3/2)³
=9/64
求f(x)与y=1的交点:
1/3x³-1/2x²+1=1
得:x²(1/3x-1/2)=0
得:x=0, 3/2
面积=∫(0, 3/2) (1-f(x))dx
=∫(0, 3/2)(-1/3x³+1/2x²)dx
=[-1/12x^4+1/6x³](0, 3/2)
=-1/12(3/2)^4+1/6(3/2)³
=9/64