(1)
a=√2,b=√3-1,且√b是2c与cosA的等比中项
∴2c*cosA=b ,2bccosA=b^2
根据余弦定理
a^2=b^2+c^2-2bccosA=b^2+c^2-b^2=c^2
∴c=a=√2
cosB=(a^2+c^2-b^2)/(2ac)=√3/2
∴B=30º ,A=C=75º
(2)
函数f(x)=sin(2x+φ)(φ的绝对值<π/4)
满足f(C/2)=c/2,
即f(5π/12)=sin(5π/6+φ)=√2/2
∵|φ|<π/4
∴5π/6+φ=3π/4,
∴φ=π/12
f(x)=sin(2x+π/12)
由2kπ+π/2≤2x+π/12≤2kπ+3π/2,k∈Z
得2kπ+5π/12≤2x≤2kπ+17π/12,k∈Z
∴kπ+5π/24≤x≤kπ+17π/24,k∈Z
函数f(x)的单调递减区间为
[kπ+5π/24,kπ+17π/24],k∈Z