解题思路:由PDB为圆O的割线,PA为圆的切线,由切割线定理,结合PD=1,BD=8易得PA长,由∠ABC=60°结合弦切角定理易得△PAE为等边三角形,进而根据PE长求出AE长及ED,DB长,再根据相交弦定理可求出CE,进而得到答案.
∵PD=1,BD=8,
∴PB=PD+BD=9
由切割线定理得PA2=PD•PB=9
∴PA=3
又∵PE=PA
∴PE=3
又∠PAC=∠ABC=60°
故答案:60,3
点评:
本题考点: 圆的切线的性质定理的证明;弦切角.
考点点评: 本题考查的知识点是与圆相关的比例线段,根据已知条件求出与圆相关线段的长,构造方程组,求出未知线段是解答的关键.