定积分1.∫【2,0】x-1/√1+x dx 2.∫【5,1】√x-1/x dx

2个回答

  • 第一题答案是:10/3 - 2√3

    第二题答案是:4 - 2arctan(2)

    ∫(x-1)/√(1+x) dx,from 0 to 2

    =∫(1+x-2)/√(1+x) dx

    =∫[(1+x)/√(1+x) - 2/√(1+x)] dx

    =∫[√(1+x) - 2/√(1+x)] d(1+x)

    =(2/3)(1+x)^(3/2) - 2*2√(1+x)

    =[(2/3)(1+2)^(3/2)-4√(1+2)] - [(2/3)(1+0)^(3/2)-4√(1+0)]

    =-2√3 - (2/3-4)

    =10/3 - 2√3

    ∫√(x-1) / x dx,from 1 to 5

    Let:u=√(x-1),x=u²+1,dx=2u du

    When x=1,u=0、when x=5,u=2

    Then the integral becomes

    2∫u²/(1+u²) du,from 0 to 2

    =2∫(1+u²-1)/(1+u²) du

    =2∫[1 - 1/(1+u²)] du

    =2u - 2arctan(u)

    =[2(2) - 2arctan(2)] - [0 - 2arctan(0)]

    =4 - 2arctan(2)