奇函数有:f(-x)=-f(x),又f(x+2)=-f(x),故有f(x+2)=f(-x),则:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(0+2)=-f(0)=f(-0)=f(0),即有-f(0)=f(0)=0,得f(6)=0.
奇函数有:f(-x)=-f(x),又f(x+2)=-f(x),故有f(x+2)=f(-x),则:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(0+2)=-f(0)=f(-0)=f(0),即有-f(0)=f(0)=0,得f(6)=0.