解直角三角形(斜三角形特殊情况):
勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)
a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边.
勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.
常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.
解斜三角形:
在三角形ABC中,角A,B,C的对边分别为a,b,c.则有
(1)正弦定理
a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径)
(2)余弦定理
a^2=b^2+c^2-2bc*CosA
b^2=a^2+c^2-2ac*CosB
c^2=a^2+b^2-2ab*CosC
注:勾股定理其实是余弦定理的一种特殊情况.
(3)余弦定理变形公式
cosA=(b^2+C^2-a^2)/2bC
cosb=(a^2+c^2-b^2)/2aC
cosC=(a^2+b^2-C^2)/2ab
三角形的面积公式
(1)S△=1/2ah (a是三角形的底,h是底所对应的高)
(2)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
(3)S△=√〔p(p-a)(p-b)(p-c)〕 〔p=1/2(a+b+c)〕(海伦—秦九韶公式)
(4)S△=abc/(4R) (R是外接圆半径)
(5)S△=1/2(a+b+c)r (r是内切圆半径)
(7)S△=c^2sinAsinB/2sin(A+B)
(8)S正△= [(√3)/4]a^2 (正三角形面积公式,a是三角形的边长) [海伦公式(3)特殊情况]