解题思路:作出粒子的运动轨迹图,求出粒子的周期,抓住9s内到达N确定圆周运动的圈数,从而确定第一次与薄板碰撞的时间.根据几何关系求出弦长,从而得出半径,结合半径公式求出粒子的速度.根据薄板的位移,抓住第一次碰撞后,接着转动[2/3]圆周又发生碰撞,结合薄板的位移求出薄板的最小长度.
(1)粒子圆周运动的周期:T=2πmqB=2π×2×10−102×10−8×π150=3s则第一次到达MN所用时间:t=23T=2s因为粒子从M出发经过9s恰好到N,相对于经过了3个周期.由题意可知,第一次和薄板碰撞经历的时间t=123T=53×3...
点评:
本题考点: 带电粒子在匀强磁场中的运动.
考点点评: 处理带电粒子在磁场中的运动问题,作出轨迹图是关键,本题的突破口在于确定圆周运动的圈数.根据周期公式和半径公式,结合几何关系进行求解.