证明:
过点D作DH∥AE交BC于H
∴∠DHB=∠ACB,∠HDF=∠E
∵AB=AC
∴∠B=∠ACB
∴∠B=∠DHB
∴BD=HD
∵BD=CE
∴HD=CE
在△DHF和△ECF中
∠HDF=∠E
∠DFH=∠EFC
HD=CE
∴△DHF≌△ECF
∴DF=EF
证明:
过点D作DH∥AE交BC于H
∴∠DHB=∠ACB,∠HDF=∠E
∵AB=AC
∴∠B=∠ACB
∴∠B=∠DHB
∴BD=HD
∵BD=CE
∴HD=CE
在△DHF和△ECF中
∠HDF=∠E
∠DFH=∠EFC
HD=CE
∴△DHF≌△ECF
∴DF=EF