[1] 1/n(n+1)= 1/n - 1/(n+1)
[2] ∵ 1/(1×2)+1/(2×3)+1/(3×4)+.+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+.+1/n - 1/(n+1)
=1-1/(n+1)
[3]原式=1-1/2015=2014/2015 【求和少了一项?1/(2014×2015)?】
证明;∵ 1-1/1×2=1-1/2
1/2×3=1/2-1/3
.
∴1/n(n+1)=1/n-1/n+1
[1] 1/n(n+1)= 1/n - 1/(n+1)
[2] ∵ 1/(1×2)+1/(2×3)+1/(3×4)+.+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+.+1/n - 1/(n+1)
=1-1/(n+1)
[3]原式=1-1/2015=2014/2015 【求和少了一项?1/(2014×2015)?】
证明;∵ 1-1/1×2=1-1/2
1/2×3=1/2-1/3
.
∴1/n(n+1)=1/n-1/n+1