证明:设AC与BD相交于O点
在直角三角形AOB中
∠AOB=1/2∠ABC=1/2*30°=15°
从而 OA=AB*sin∠AOB,OB=AB*cos∠AOB
∵sin∠AOB=sin15°
=sin30°/2
=√((1-cos30°)/2)
=√((1-√3/2)/2)
=√(2-√3)/2
cos∠AOB=cos15°
=cos30°/2
=√((1+cos30°)/2)
=√((1+√3/2)/2)
= √(2+√3)/2
∴OA*OB=AB*√(2-√3)/2*AB*√(2+√3)/2
=AB^2/4
又 OA=1/2AC,OB=1/2BD
∴AB^2=4*OA*OB
=4*1/2AC*1/2BD
=AC*BD
则 AB²=AC*BD.