已知等差数列{a n }的首项a 1 =1,公差d>0.且a 2 ,a 5 ,a 14 分别是等比数列{b n }的b

1个回答

  • (1)∵a 2=1+d,a 5=1+4d,a 14=1+13d,且a 2,a 5,a 14成等比数列,

    ∴(1+4d) 2=(1+d)(1+13d),解得d=2,

    ∴a n=1+(n-1)•2=2n-1,

    又b 1=a 2=3,b 2=a 5=9,

    ∴q=3, b n =3• 3 n-1 = 3 n ;

    (2)

    c 1

    b 1 +

    c 2

    b 2 +…+

    c n

    b n =a n+1,即

    C 1

    3 +

    C 2

    3 2 +…+

    C n

    3 n =2n+1 ①,

    则n≥2时,

    C 1

    3 +

    C 2

    3 2 +…+

    C n-1

    3 n-1 =2n-1 ②,

    ①-②得,

    C n

    3 n =2 ,所以 C n =2• 3 n (n≥2),

    n=1时,C 1=9,

    所以 C n =

    2• 3 n ,n≥2

    9,n=1 ,

    所以c 1+c 2+…+c 2013=9+2•3 2+2•3 3+…+2•3 2013

    =9+2•

    3 2 (1- 3 2012 )

    1-3 =3 2014