(1)∵a 2=1+d,a 5=1+4d,a 14=1+13d,且a 2,a 5,a 14成等比数列,
∴(1+4d) 2=(1+d)(1+13d),解得d=2,
∴a n=1+(n-1)•2=2n-1,
又b 1=a 2=3,b 2=a 5=9,
∴q=3, b n =3• 3 n-1 = 3 n ;
(2)
c 1
b 1 +
c 2
b 2 +…+
c n
b n =a n+1,即
C 1
3 +
C 2
3 2 +…+
C n
3 n =2n+1 ①,
则n≥2时,
C 1
3 +
C 2
3 2 +…+
C n-1
3 n-1 =2n-1 ②,
①-②得,
C n
3 n =2 ,所以 C n =2• 3 n (n≥2),
n=1时,C 1=9,
所以 C n =
2• 3 n ,n≥2
9,n=1 ,
所以c 1+c 2+…+c 2013=9+2•3 2+2•3 3+…+2•3 2013
=9+2•
3 2 (1- 3 2012 )
1-3 =3 2014;