(8)当x→-∞时,ln(1+e^x)∽e^x ln(1+2^x)∽2^x
原式=lim[x→-∞](e^x/2^x)=lim[x→-∞](e/2)^x=0
(9)属于“∞/∞”型,用罗比塔法则
原式=lim[x→+∞][e^x/(1+e^x)]/[2^xln2/(1+2^x)]
=lim[x→+∞][e^x/(1+e^x)]/lim[x→+∞][2^xln2/(1+2^x)]
=lim[x→+∞][e^x/e^x)]/lim[x→+∞][2^xln2ln2/(2^xln2)]
=ln2
(10) 属于“0*∞”型,化为“0/0"用罗比塔法则
原式=lim[x→+∞][5^(2/x^3)-1]/x^(-3)
=lim[x→+∞][5^(2/x^3)ln5/[-3x^(-4)=-∞
(11) 原式=lim[x→0]{e^x[1-e^(tanx-x)]}/(x-tanx)
=lim[x→+0]{e^x[e^(tanx-x)-1]}/(tanx-x)
=1