①lim x→n- (x-[x])
=n-(n-1)
=1
②lim x→e ln(x-1)/(x-e)
=[lim x→e ln(x-1)*lim x→e [1/(x-e)]
=ln(e-1)*(+∞)
=+∞
③limx→0+ ln x^x
=limx→0+ (lnx)/(1/x)
=limx→0+ (1/x)/(-1/x²)
=limx→0+ (-x)
=0
①lim x→n- (x-[x])
=n-(n-1)
=1
②lim x→e ln(x-1)/(x-e)
=[lim x→e ln(x-1)*lim x→e [1/(x-e)]
=ln(e-1)*(+∞)
=+∞
③limx→0+ ln x^x
=limx→0+ (lnx)/(1/x)
=limx→0+ (1/x)/(-1/x²)
=limx→0+ (-x)
=0