已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(

1个回答

  • 解题思路:(1)利用x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,即可得到x3,x4,x5,再利用等比数列的定义即可得出λ的值;

    (2)利用数学归纳法证明即可;

    (3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),即

    x

    n

    x

    n−1

    =(

    x

    2

    x

    1

    )•

    λ

    n−2

    λ

    n−2

    ,利用“累加求和”可得xn,再利用等比数列的前n项和公式即可得出不等式的左边,进而证明小于右边.

    (1)∵x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,

    ∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.

    x4=(λ+1)(λ+2)-2λ=λ2+λ+2.

    x5=(λ+1)(λ2+λ+2)−λ(λ+2)=λ32+λ+2.

    ∵x1,x3,x5成等比数列,∴

    x23=x1•x5,

    ∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.

    (2)下面利用数学归纳法证明:

    ①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;

    ②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.

    则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,

    即xk+2-yk+2≤xk+1-yk+1成立.

    即命题定义n=k+1时也成立.

    综上可知:命题定义任意n∈N*都成立.

    (3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),

    ∴xn−xn−1=(x2−x1)•λn−2=λn−2,

    ∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1

    n-2n-3+…+λ+1+1=

    λn−1−1

    λ−1+1.(0<λ<1).

    ∴x2k=

    λ2k−1−1

    λ−1+1.

    ∴x2k-xk=

    λ2k−1−λk

    λ−1

    ∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk

    =[1/λ−1][(λ+λ3+…+λ2k-1)-(λ+λ2+…+λk)]

    =[1/λ−1][

    λ(λ2k−1)

    λ2−1−

    λk−1

    λ−1]

    =[1/1−λ]

    (1−λk)(1−λk+1)

    1−λ2

    =[1

    (1−λ)2•

    (1−λk)(1−λk+1)/1+λ]<

    1

    (1−λ)2.=右边.

    故不等式成立.

    点评:

    本题考点: 数列与不等式的综合.

    考点点评: 熟练掌握等比数列的定义、通项公式、前n项和公式、数学归纳法、“累加求和”等是解题的关键.