解题思路:(1)利用x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,即可得到x3,x4,x5,再利用等比数列的定义即可得出λ的值;
(2)利用数学归纳法证明即可;
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),即
x
n
−
x
n−1
=(
x
2
−
x
1
)•
λ
n−2
=
λ
n−2
,利用“累加求和”可得xn,再利用等比数列的前n项和公式即可得出不等式的左边,进而证明小于右边.
(1)∵x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,
∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.
x4=(λ+1)(λ+2)-2λ=λ2+λ+2.
x5=(λ+1)(λ2+λ+2)−λ(λ+2)=λ3+λ2+λ+2.
∵x1,x3,x5成等比数列,∴
x23=x1•x5,
∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.
(2)下面利用数学归纳法证明:
①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;
②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.
则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,
即xk+2-yk+2≤xk+1-yk+1成立.
即命题定义n=k+1时也成立.
综上可知:命题定义任意n∈N*都成立.
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),
∴xn−xn−1=(x2−x1)•λn−2=λn−2,
∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1
=λn-2+λn-3+…+λ+1+1=
λn−1−1
λ−1+1.(0<λ<1).
∴x2k=
λ2k−1−1
λ−1+1.
∴x2k-xk=
λ2k−1−λk
λ−1
∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)
=[1/λ−1][(λ+λ3+…+λ2k-1)-(λ+λ2+…+λk)]
=[1/λ−1][
λ(λ2k−1)
λ2−1−
λk−1
λ−1]
=[1/1−λ]
(1−λk)(1−λk+1)
1−λ2
=[1
(1−λ)2•
(1−λk)(1−λk+1)/1+λ]<
1
(1−λ)2.=右边.
故不等式成立.
点评:
本题考点: 数列与不等式的综合.
考点点评: 熟练掌握等比数列的定义、通项公式、前n项和公式、数学归纳法、“累加求和”等是解题的关键.