动圆D过定点A(0,2),圆心D在抛物线x 2 =4y上运动,MN为圆D在x轴上截得的弦.

1个回答

  • (1)设直线BC为y=kx+1,代入x 2+y 2=4得,(1+k 2)x 2+2kx-3=0,

    S=

    1

    2 |FA|| x 1 - x 2 |

    =

    | x 1 - x 2 |

    2

    =

    ( x 1 + x 2 ) 2 -4 x 1 x 2

    2

    =

    4 k 2 +3

    (1+ k 2 ) 2

    =

    4-(

    1

    1+ k 2 -2 ) 2 ≤

    3 .

    当且仅当k=0时,△ABC的最大面积为

    3 .

    (2)设圆心 (a,

    a 2

    4 ) ,则圆为 (x-a ) 2 +(y-

    a 2

    4 ) 2 = a 2 +(2-

    a 2

    4 ) 2 .

    当y=0时,x=a±2,

    ∴|MN|=4,

    令∠MAN=θ,

    由余弦定理,得16=m 2+n 2-2mncosθ,

    又由 S △AMN =

    1

    2 mnsinθ-

    1

    2 |MN| y A

    =

    1

    2 ×4×2=4 ,

    16

    mn =2sinθ ,

    m

    n +

    n

    m =2(sinθ +cosθ+

    =2

    2 sin(θ+

    π

    4 ) ≤2

    2 ,

    当 θ=

    π

    4 时取得最大值.