sin (C)
=sin (π-A-B)
=sin (A+B)
=sin (arccos (-5/13)+arccos (3/5) )
=sin (arccos (-5/13) )cos (arccos (3/5) )+cos (arccos (-5/13) )sin (arccos (3/5) )
=3/5 √(1-5^2/(13)^2 )-5/13 √(1-3^2/5^2 )
=3/5⋅12/13-5/13⋅4/5
=16/65
While BC=a=5,
b=(a sin B)/sin A
=(a√(1-cos^2 B ))/√(1-cos^2 A )
=5⋅4/5⋅13/12
=13/3
Area=1/2 ab sin C
=1/2⋅5⋅13/3⋅16/65
=8/3