在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为A n ,令a n =log 2

1个回答

  • (1)根据题意,n+2个数构成递增的等比数列,

    设为b 1,b 2,b 3,…,b n+2,其中b 1=1,b n+2=2,

    可得A n=b 1•b 2•…•b n+1•b n+2,…①;A n=b n+2•b n+1•…•b 2•b 1,…②

    由等比数列的性质,得b 1•b n+2=b 2•b n+1=b 3•b n=…=b n+2•b 1=2,

    ∴①×②,得

    A 2n =( b 1 b n+2 )•( b 2 b n+1 )•…•( b n+1 b 2 )•( b n+2 b 1 ) =2 n+2

    ∵A n>0,∴ A n = 2

    n+2

    2 .

    因此,可得

    A n+1

    A n =

    2

    n+3

    2

    2

    n+2

    2 =

    2 (常数),

    ∴数列{A n}是首项为 A 1 =2

    2 ,公比为

    2 的等比数列.

    ∴数列{A n}的前n项和S n=

    2

    2 [1- (

    2 ) n ]

    1-

    2 = (4+2

    2 )[ (

    2 ) n -1] .

    (2)由(1)得 a n =lo g 2 A n =lo g 2 2

    n+2

    2 =

    n+2

    2 ,

    ∵ tan1=tan[(n+1)-1]=

    tan(n+1)-tann

    1+tan(n+1)tann ,

    ∴ tan(n+1)tann=

    tan(n+1)-tann

    tan1 -1,n∈ N * .

    从而tana 2n•tana 2n+2=tan(n+1)tan(n+2)=

    tan(n+2)-tan(n+1)

    tan1 -1,n∈ N *

    T n =tan a 2 •tan a 4 +tan a 4 •tan a 6 +…+tan a 2n •tan a 2n+2

    =tan2•tan3+tan3•tan4+…+tan(n+1)tan(n+2)

    =(

    tan3-tan2

    tan1 -1)+(

    tan4-tan3

    tan1 -1)+…+(

    tan(n+2)-tan(n+1)

    tan1 -1)

    =

    tan(n+2)-tan2

    tan1 -n.

    即T n=tana 2•tana 4+tana 4•tana 6+…+tana 2n•tana 2n+2

    =

    tan(n+2)-tan2

    tan1 -n .