f(x)=mn=2cosxcosx+1*根号3sin2x=2cosxcosx-1+根号3sin2x+1=cos2x+根号3sin2x+1
=2[(1/2)cos2x+(根号3/2)sin2x]+1=2[sin30°cos2x+cos30°sin2x]+1=2sin(30°+2x)+1
f(x)=mn=2cosxcosx+1*根号3sin2x=2cosxcosx-1+根号3sin2x+1=cos2x+根号3sin2x+1
=2[(1/2)cos2x+(根号3/2)sin2x]+1=2[sin30°cos2x+cos30°sin2x]+1=2sin(30°+2x)+1